Weighted Best-First Search for W-Optimal Solutions over Graphical Models
نویسندگان
چکیده
The paper explores the potential of weighted best-first search schemes as anytime optimization algorithms for solving graphical models tasks such as MPE (Most Probable Explanation) or MAP (Maximum a Posteriori) and WCSP (Weighted Constraint Satisfaction Problem). While such schemes were widely investigated for path-finding tasks, their application for graphical models was largely ignored, possibly due to their memory requirements. Compared to the depth-first branch and bound, which has long been the algorithm of choice for optimization in graphical models, a valuable virtue of weighted best-first search is that they are w-optimal, i.e. when terminated, they return a solution cost C and a weight w, such that C ≤ w · C∗, where C∗ is the optimal cost. We report on a significant empirical evaluation, demonstrating the usefulness of weighted best-first search as approximation anytime schemes (that have suboptimality bounds) and compare against one of the best depth-first branch and bound solver to date. We also investigate the impact of different heuristic functions on the behaviour of the algorithms.
منابع مشابه
Evaluating Weighted DFS Branch and Bound over Graphical Models
Weighted search was explored significantly in recent years for path-finding problems, but until now was barely considered for optimization tasks such as MPE/MAP and Weighted CSPs. An important virtue of weighted search schemes, especially in the context of anytime search, is that they are w-optimal, i.e. when terminated, they return a weight w, and a solution cost C, such that C ≤ w · C∗, where...
متن کاملSEARCHING FOR M BEST SOLUTIONS IN GRAPHICAL MODELS Searching For M Best Solutions In Graphical Models
The paper focuses on finding the m best solutions to combinatorial optimization problems using best-first or depth-first branch and bound search. Specifically, we present a new algorithm m-A*, extending the well-known A* to the m-best task, and for the first time prove that all its desirable properties, including soundness, completeness and optimal efficiency, are maintained. Since bestfirst al...
متن کاملSEARCHING FOR THE M BEST SOLUTIONS IN GRAPHICAL MODELS Searching For The M Best Solutions In Graphical Models
The paper focuses on finding the m best solutions to combinatorial optimization problems using best-first or depth-first branch and bound search. Specifically, we present a new algorithm mA*, extending the well-known A* to them-best task, and for the first time prove that all its desirable properties, including soundness, completeness and optimal efficiency, are maintained. Since bestfirst algo...
متن کاملWeighted anytime search: new schemes for optimization over graphical models
Weighted search (best-first or depth-first) refers to search with a heuristic function multiplied by a constant w [Pohl (1970)]. The paper shows for the first time that for graphical models optimization queries weighted best-first and weighted depth-first Branch and Bound search schemes are competitive energy-minimization anytime optimization algorithms. Weighted best-first schemes were investi...
متن کاملHeuristic Search for m Best Solutions with Applications to Graphical Models
The paper focuses on finding the m best solutions to a combinatorial optimization problems using Best-First or Branch-and-Bound search. We are interested in graphical model optimization tasks (e.g., Weighted CSP), which can be formulated as finding the m-best solutionpaths in a weighted search graph. Specifically, we present m-A*, extending the well-known A* to the m-best problem, and prove tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014